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Abstract Models used to predict soil loss and sediment constituency require a timely and 
spatially complete characterization of the region being modeled. For a model like AnnAGNPS 
data requirements extend beyond a simple land use and land cover data set to crop type. 
AnnAGNPS incorporates agricultural characterizations to include crop rotation and tillage 
practices. Generally, this information does not exist in the public record in the format necessary 
for the AnnAGNPS model. Digital image processing of remotely sensed imagery offers a 
resource that provides the timely and spatially complete data source from which to synthesize the 
information necessary to run the model. In particular, Landsat imagery provides the repetitive 
and synoptic imagery at a scale that fits very well the needs of the AnnAGNPS model. Multi-
temporal/multi-spectral image processing provided accurate crop species mapping for this study. 
This method relies on the seasonal variation patterns of specific crops, including soybeans, corn 
and winter wheat, by identifying the unique observable spectral changes throughout the year. 
The technique was tested in the Sandusky watershed in Ohio in 2003 and 2004.  Two problems 
with using the multi-temporal satellite images were identified including having a sufficient 
number of ground data points and just having enough images throughout the year. Several 
images used in the study had clouds and haze and various methods of atmospheric correction 
were used to increase the number of available images. Developing a list of known ground control 
points has required the use of Farm Service Administration aerial slides and manual image 
analysis. Once extracted these data were used to train and assess the accuracy of the crop rotation 
derived from the Landsat imagery. Finally, total accuracy of crop type was greater than 85 
percent for both years.  
 

Introduction 
 
There has been growing interest in linking the preservation of water quality to agricultural land 
practices in the Sandusky River watershed. A number of simulation models have been developed 
to evaluate water quality parameters affected by agricultural land management at both field scale 
and watershed scale (Zhou, 1997). The most widely used models include CREAMS (Chemicals, 
Runoff, Erosion for Agricultural Management Systems), EPIC (Erosion-Productivity Impact 
Calculator), AGNPS (Agricultural Non-Point Source Pollution Model), and SWAT (Soil and 
Water Assessment Tool), which is part of BASINS (Better Assessment Science Integrating Point 
and Non-point Sources) developed by the U.S. EPA. These models have been used to predict 
various impacts of land management on water quality (e.g., Srinivasan and Aronod 1994, 
Muttiah and Wurbs 2002), sediment yield and nutrient loss (e.g., Luzio et al., 2002), and 
pesticide fate and transport (e.g., Brown and Hollis 1996) in a wide range of watershed scales 
from a few dozen hectares to thousands of square kilometers (Wu et al., 2003). Among many 
agricultural practices considered in these models, crop rotation is regarded as a basic but 
important practice that has significant influences on water quality. 



To date there is no comprehensive inventory of crop types on the basis of each farm field for the 
Sandusky River watershed, which directly resulted in no complete crop rotation information over 
the entire watershed. Currently, crop type data is collected for only 10% of the farm fields every 
year by the USDA through ground surveying due to the high cost of human labor involved in 
driving and inspecting each field (Farmer Service Agency, 2004). The crop rotation information 
is necessary in order to fully understand the quantitative relationships between farming practices 
and water quality in the Sandusky watershed.  Thus, mapping crop types in continuous years for 
the watershed has become a necessity. 

The Sandusky River is the second largest river draining into Lake Erie in the State of Ohio, with 
a drainage area of 1,421 square miles (Figure1). The Sandusky River watershed is an agriculture-
dominated area, with 84% of the land used for crop 
production (Ohio Department of Agriculture, 1995). 
Over the last decades as the population grew, the use 
of agricultural chemicals became widespread and the 
number of livestock increased, the water quality of 
the river has declined, resulting in loss of 
biodiversity and health impacts from contaminated 
water. There has been growing interest in linking the 
preservation of water quality to agricultural land 
practices in the Sandusky River watershed. A 
number of simulation models have been developed 
to evaluate water quality parameters affected by 
agricultural land management at both field scale and 
watershed scale (Zhou, 1997).  

Figure 1. Sandusky drainage basin. 
 

METHODOLOGY 
 
Sensor Preparation Landsat 5, which was launched in 1984, carries the 30-meter Thematic 
Mapper (TM) scanner. The TM scanner provides seven multi-spectral channels (3 visible, 1 
near-infrared, 2 mid-infrared, 1 thermal-infrared) at 30-meter resolution except for thermal-
infrared at 120-meter resolution (NASA, 2005).  
 
Multi-temporal remote sensing has had success in detecting the seasonal characteristics unique to 
each of the target species and has allowed the differentiation of crop types (Schriever et al., 
1993). It takes into account changes in reflectance as a function of plant phenology (stage of 
growth) (Figure 1). Imagery from different times in the growing cycle can capture the unique 
phenology characteristics of each crop type and thus can be used to identify different crops 
otherwise difficult to distinguish (Figure 2).  
 



 
Figure 2. Spectral variation observed in vegetation throughout a year. 

 
 

 
Table 1. Landsat Imagery (2003 – 2004) Used in the Study. 

 
The study area is covered by two scenes of Landsat ETM+ and TM imagery: path 19, row 31 and 
path 19, row 32. Landsat ETM+ imagery for these two scenes from 2003 and 2004 were 
examined and selected according to the extent of cloud cover. Cloud-free images were the most 
desirable. Because of the lack of cloud-free images in some years, some imagery with cumulus 
or cirrus clouds was also considered usable, but these images required further processing to get 
rid of the cloud before they could be used in the classification. Some Landsat TM imagery from 
2003 were also used in this study because ETM+ data on Landsat 7 satellite developed the Scan 
Line Corrector (SLC) anomaly.  
 



This research is focusing on agricultural areas of the watershed and therefore non-agricultural 
regions were such as urban and quarry were masked out.  
 
Atmospheric Correction Fair weather cumulus is a cloud type that frequently appears in 
satellite images. Cumulus clouds not only “block” the land cover below them from the sensor, 
they also reflect solar radiation away, casting shadows on the ground. This shadowing effect 
reduces solar radiation at the surface. The true reflectance of the land cover under the cumulus 
cloud and the spots where the shadow is cast is thus unknown from the imagery. The influence of 
the cumulus cloud and its shadow appears to be significant and there is no way to recover the lost 
information.  
 
The methods that we used to mask the cumulus cloud and the shadow are in fact quite simple. 
First, thresholds on the band ratio of Landsat band one and band six (band1/band6) were used to 
distinguish cloud pixels from other pixels (Jackson, 2004). Compared to pixels of cloud-free land 
cover, pixels of cumulus clouds usually have higher values in band 1 and lower values in band 6, 
which makes their ratios of band1/band6 have much larger values than those of other pixels. 
Pixels of shadows were identified by using thresholds respectively on band 1, band 2, band 3 and 
band 4 (Jackson, 2004). These thresholds were developed for each image through a heuristic 
approach. A binary mask was built after the identification of the cloud and shadow pixels. The 
mask has the same dimension as the original image. The pixels in the mask that correspond to the 
cloud and shadow pixels had value 0, while all other pixels in the mask had the value 1. Then, by 
applying a binary mask derived from the previous process, value 0 was assigned to the cloud and 
shadow pixels and values of other pixels stayed unchanged.  
 
Training Data For soybean, wheat, corn, hay/pasture and their subclasses, we acquired training 
information from either the ground surveying conducted in 2004 by James Coss.  For 2003, we 
acquired the ground truth information for the crop types from the true-color aerial photos that we 
purchased from Farmer Service Agencies (FSA) of four counties in Ohio including Wyandot, 
Crawford, Sandusky and Seneca. Each photo is 1024 x 1536 pixels, with a ground resolution of 
approximately 3 meters (10 feet) (Figure 3). The aerial photographs were scanned at the 
resolution of 2400 dots per square inch (dpi). Each scanned image was then identified in the 
flight line map, oriented north, and named according to the county, the year, the flight line 
number and the slide number. Because the scanned images were recorded in the coordinates of 
the scanner, they needed to be converted to reflect their position in the real world so that the crop 
type information is tied with the correct farm field. This was accomplished by using 
georeference tools in ArcGIS to line up the aerial photographs with a projected street layer. After 
georeferencing, the aerial photos were ready for interpretation. 
 



 
Figure 3. Aerial photo used in the training set. 

 
An interpretation key was developed after carefully reviewing the four photographic 
characteristics of different crop types including corn, soybean, hay, and winter wheat. An 
interpretation key is a set of guidelines used to assist interpreters in identifying features (Reising, 
2005). Winter wheat was the easiest crop to distinguish due to its unique yellowish/brownish 
tone because almost all winter wheat were headed by the time that the aerial photographs were 
taken. Corn and soybean can be differentiated from the tone and texture. Soybean usually has a 
lighter green tone and a smooth texture, while corn typically shows a darker green tone and a 
rough texture. The differences between corn and soybean can be very apparent in aerial photos 
taken in late July or early August when corn was silked and soybean was setting pods. However, 
in some photos acquired in late June and early July, the differences can sometimes be 
unnoticeable because both corn and soybean were just planted. Crop stress resulting form 
moisture problems, fertilizer problems, insect and disease problems, and weed and herbicide 
problems can also cause changes in tone, texture, pattern and shape and thus need to be 
considered in crop identification.  
 
Classification A maximum likelihood classifier within ENVI was used on the multi-temporal 
Landsat imagery. There were a total of seven types of land use/land cover defined in the study, 
including soybean, wheat, corn, fallow, riparian, water, and forest. The crop type for a given year 
is defined as whatever crop was growing in the farm field on June 15th that year. This date was 
chosen because all major crops including winter wheat were usually growing on this date. Winter 
wheat planted in fall will not be counted as the crop for that year, i.e. the previous summer. 
Instead, it will be considered as the crop for next year. However, whether winter wheat was 
planted in the following fall does influence the classification of the crop type for that year, 
because winter wheat has a very different spectral signature curve from that of a fallow field. For 
instance, if we use three Landsat images acquired separately in April, June, and October to 
classify corn, the corn fields with winter wheat growing in October will have different phenology 
pattern over the year compared to the corn fields with nothing growing in October. 
 
For other classes including water, fallow, riparian areas, and forest, we developed the training 
points from Landsat images. They can be easily recognized in Landsat images due to their 
unique spectral signatures.  Because water is a strong absorber of near infrared radiation, clear 
water usually appears much darker in band 4 (near-infrared) than vegetation and soil. The 
reflectance of turbid water is usually bigger than that of clean, clear water, but still usually 
smaller than vegetation and soil. That is why clean, clear water in forest area usually look darker 



than water with industrial pollution in an industrial area or water with suspended soils in a flood 
plain.  
 
Fallow fields are those that are not planted for a period of time so that they can regain their 
fertility. They usually appear from brown to tan in true-color Landsat composites. Mid-spring 
(April or May) images together with early-summer (June) images were used to identify training 
data for fallow fields for each year. If there was no crop growing in the field on both images, 
then the field was determined as fallow for that year.  
 
Post Classification Three post-classification techniques were applied in this study to improve 
the classification results. We first used one of ENVI’s post-classification functions, Sieve 
Classes to solve the problem of isolated pixels occurring in the classification images. Sieving 
classes removes isolated classified pixels using blob grouping (ENVI online manuals). Although 
low pass or other types of filtering techniques could also be used to remove these isolated pixels, 
the class information would be contaminated by adjacent class codes (ENVI online manuals). 
The sieving class method looks at the neighboring 4 or 8 pixels to determine if a pixel is grouped 
with pixels of the same class (ENVI online manuals). If the number of pixels in a class that are 
grouped is less than the value that you enter, those pixels will be removed from the class (ENVI 
online manuals). When pixels are removed from a class using sieving, black pixels (unclassified) 
will be left (ENVI online manuals). 
 
Another post-classification procedure, Clump Class, was performed after the sieving class, in 
which adjacent similar classified areas will be clumped together using morphological operators 
(ENVI online manuals). Classified images often suffer from a lack of spatial coherency (speckle 
or holes in classified areas) (ENVI online manuals). Again, low pass filtering could be used to 
smooth out these in coherencies, but the class information would be contaminated by adjacent 
class codes. Clumping classes solves this problem (ENVI online manuals). The selected classes 
are clumped together using a kernel of the size specified in the parameters dialog (ENVI online 
manuals). 
 
After the classified images were sieved and clumped, ENVI’s Combine Classes function was 
used to combine two subclasses to one big class. For instance, the wheat-none subclass was 
combined with wheat-wheat subclass to one big wheat class. This wheat class includes both 
wheat pixels with wheat growing again in the fall and wheat pixels without anything planted in 
the fall. 
 
ENVI’s post-classification accuracy assessment tools were used to calculate a confusion matrix 
(contingency matrix) for each classification result using ground truth ROIs. The confusion 
matrix can show us the accuracy of a classification result by comparing the classification result 
with the ground truth information that we acquired from either ground surveying or aerial 
photographs. Over 150 points were prepared for each of the other classes using the ground truth 
information. For major crop classes, corn, soybean, and winter wheat, over 300 points were 
prepared. The exact same ground truth information was used to build the confusion matrices for 
the classification on both the MNF transformed imagery and non-MNF transformed multi-
temporal Landsat imagery (Table 2 and Table 3) 
 



Ground truth information (pixels) Classes 
Soybean Corn Wheat Fallow Forest/Riparian Water Total 

Soybean 729 81 0 0 0 0 810 
Corn 32 808 0 0 0 0 840 
Wheat 76 0 636 48 0 0 760 
Fallow 0 0 0 256 0 0 256 
Forest/Riparian 59 0 0 0 486 0 545 
Water 0 0 0 0 0 308 308 
Unclassified 0 0 0 0 0 0 0/0 

Total 896 889 636 304 486 308 3519 

Table 2. 2003 Confusion matrices 

 
Ground truth information (pixels) Classes 

Soybean Corn Wheat Fallow Forest/Riparian Water Total 
Soybean 348 25 0 82 0 0 455 
Corn 32 77 43 2 60 2 516 
Wheat 0 0 432 0 0 0 432 
Fallow 0 0 0 187 0 0 187 
Forest/Riparian 0 87 0 0 324 1 417 
Water 0 0 0 0 0 165 165 
Unclassified 0 0 0 0 0 12 12 

Total 380 489 475 271 384 180 2179 

Table 3. 2004 Confusion matrices 
 

CONCLUSION 
 

The overall accuracy is an average with the accuracy of each class weighted by the proportion of 
test samples for that class in the total training or testing sets (Brandon R. Bottomley, 1998). A 
widely used, acceptable accuracy is 85%, which is striven for in the land use classification 
adopted by the U.S. Geological Survey (Brandon R. Bottomley, 1998). The accuracy assessment 
reports indicated that for the year 2004, the overall accuracy of the classification of multi-
temporal Landsat imagery is 88.94%. For 2003, the overall accuracies were 93.55% for the 
classification of  multi-temporal Landsat imagery. This means that close to or over 85% of all the 
pixels tested were correctly classified in the classifications according to the ground truth 
information.  
 
The overall accuracies of the classifications were very close to or higher than the widely used 
standard of 85% for acceptable classifications. The values of kappa coefficients (over 80%) for 
all the classifications also indicated strong agreement between the classification results and the 
ground truth information. The values of these two indices, overall accuracy and the kappa 
efficient, together confirmed the general effectiveness of the methodology used in this thesis 
project for crop classification, especially the experimental cloud removing techniques and the 
tentative methods for extracting crop type information from aerial photographs (Figure 4).  
 



 

 
Figure 4. Results of crop mapping using multi-temporal remote sensing with Landsat 2004. 
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